
King David Comprehensive college LESSON NOTES ON ALGORITHM FOR FORM FIVE

 PRESENTED BY TUMBU BARTHOLOMEW ELAD 1 | P a g e

1. Basic Algorithmic Control Structures

 1.1. Sequence Control Structure

A sequence control structure executes a set of

instructions one after the other from the first to the last in the

order they are given.

Syntax: Instruction 1

 Instruction 2

 …

 Instruction n

 Flow chart representation: Sequence

 1.2. Selection Control Structure

A selection control structure (condition control structure) chooses the instruction or set of instructions to be executed

based on the validity of a certain

condition. Examples: If …then else and

case … of.

 1.2.1. If… then … else

Syntax: IF condition THEN

 Instruction 1

 ELSE

 Instruction 2

Explanation Condition is a Boolean expression meaning that it can take only one of two values true or false. The

condition is evaluated, if it is true, instruction 1 is executed. If it is false, instruction 2 is executed. Note that

instructions 1 and 2 could be compound instructions.

It is possible to nest many selection structures.

Syntax: If condition1 then

 If condition2 then

 Instruction 1 Else

 Instruction 2

 Else

 Instruction 3 Explanation If condition1 is

true, we move to condition2. If condition2 is true,

then instruction 1 is executed otherwise, instruction 2 is executed. If condition 1 is false, instruction

3 is executed. Instruction 1 or instruction 2 will be executed if and only if condition 1 is true.

Get a Get

b c  a

+ b

Print “Sum =”, c

End

Action 1

Action 2

?

Action 3

True

False

Get a, b
If a = 0 then

 Print “Error: division by zero”
Else
 Print b/a

E x.

Get a, b
If a <> 0 then
 If b <> 0 then
 Print b/a
 Else
 Print “Answer is 0”
Else
 Print “Error: division by 0”
End

E x.

King David Comprehensive college LESSON NOTES ON ALGORITHM FOR FORM FIVE

 PRESENTED BY TUMBU BARTHOLOMEW ELAD 2 | P a g e

 1.2.2. Case … of

Syntax: Case variable of

 Case 1: Instruction 1

 Case 2: Instruction 2

 …

 Case n: Instruction n

 End

Explanation The value of variable is evaluated, if it matches with case 1, instruction 1 is executed. If it matches with

case 2, instruction 2 is executed and so on. Case…of is a multiple selection structure. It is used when an important

number of choices are to be considered depending on the value of a variable.

 1.3. Repetition Control Structure

The repetition (iteration) control structure executes an instruction or set of instructions many times until a certain

condition is reached or while a condition is true. Repetition structures define the order of operations and the number

of repetitions. They are also known as loops. Examples are, while…do, repeat…until, for…to…do.

 1.3.1. While Loop

Syntax: While condition do

 Instruction(s)

 End while

Explanation The condition is evaluated, if it is true instruction(s) is/are executed. Instruction(s) is/are executed as long

as condition remains true. When the condition becomes false, the loop stops.

The condition for the loop to stop comprises of a variable called control or iteration variable whose value must change

at the end of each execution of the loop.

In the example above, the control

variable is “i”.

 1.3.2. Repeat Loop

Syntax: Repeat

 Instruction(s)

 Until condition

Explanation The instruction or set of instructions is executed and the condition is evaluated.

If it evaluates to false, the instruction or set of instructions is executed again. If condition evaluates to true, the program

exits the loop.

Get day
Case day of

 1: print “today is Monday”

 2: print “today is Tuesday”

 …

 7: print “today is Sunday”
End

E x.

Get n

 i  1

 While i <= n do

 Print “this is a while loop”

 i  i + 1

 End while

E x.

False

True

Action 1

Action 2

?

Get n

 i  1

 Repeat

 Print “this is a repeat loop”

 i := i + 1

 Until i <= n

E x.

King David Comprehensive college LESSON NOTES ON ALGORITHM FOR FORM FIVE

 PRESENTED BY TUMBU BARTHOLOMEW ELAD 3 | P a g e

Remark! The Repeat until loop must be executed at least once as the condition is evaluated only at the end of the loop.

 1.3.3. For Loop

Syntax: For var := low_limit to hi_limit do

 Instruction(s)

Or

 For var := hi_limit downto low_limit do

 Instruction(s)

Explanation var (variable) is given a value low limit or hi_limit depending on the loop, which is automatically

incremented or decremented (by 1) after any execution of the loop. The loop stops when low_limit becomes greater

than hi_limit. In both cases, if hi_limit is less than low_limit, the loop body is not executed at all.

Exercise! Exercise! Exercise!

1) Write an algorithm that reads a value 𝑛 and writes the first 𝑛 numbers.

2) Write an algorithm to calculate the area of a circle.

3) Write an algorithm to solve a linear equation

4) Write an algorithm that reads a person’s sex and writes good morning sir if it’s

male and good morning madam if it’s female

5) Write an algorithm that reads two numbers and an operator and returns the value

of the operation.

2. Recursion

Some problems are recursive in nature. The solution to such problems involves the repeated application of the

solution to its own values until a certain condition is reached. Algorithms for such problems are known as recursive

algorithms.

A recursive algorithm is an algorithm that calls (invokes) itself during its execution. Examples are the factorial function

and the sum function.

Recursion can be defined as the calling of a procedure by itself, creating a new copy of the procedure.

 2.1. Factorial Function

Factorial is defined as:

1! = 1

2! = 2 × 1 = 2

3! = 3 × 2 × 1 = 6

4! = 4 × 3 × 2 × 1 = 24

5! = 5 × 4 × 3 × 2 × 1 = 120

…

𝑛! = 𝑛 × (𝑛 − 1) × (𝑛 − 2) × … × 2 × 1

Get n
For i := 1 to n do
 Print “this is a for loop”
End For

Or
Get n
For i:= n downto 1 do

 Print “this is a for loop”
End For

E x.

King David Comprehensive college LESSON NOTES ON ALGORITHM FOR FORM FIVE

 PRESENTED BY TUMBU BARTHOLOMEW ELAD 4 | P a g e

By studying the above equations closely, we see that the factorial of any number 𝑛 can be calculated by multiplying the

number by the factorial of the preceding number.

We therefore have:

1! = 1

2! = 2 × 1!

3! = 3 × 2!

4! = 4 × 3!

5! = 5 × 4!

…

𝑛! = 𝑛 × (𝑛 − 1)!

Factorial is defined recursively as:

Get n

If 𝑛 = 0 or 𝑛 = 1 then

 Print “answer is 1”

Else

 𝑓𝑎𝑐𝑡 𝑛 × 𝑓𝑎𝑐𝑡(𝑛 − 1)

 Print fact

Remark: 𝑛! = 1 is known as the base case. Every recursive problem must always have some base case which can be

solved without recursion. For cases that are to be solved recursively, the recursive call must always be a case that

makes progress towards the base case.

 2.2. The Sum Function

The sum function is a function that calculates the sum of the first 𝑛 integers. For example we want to calculate the sum

of the first 5 integers 1, 2, 3, 4 and 5. Their sum is calculated as follows:

𝑆𝑢𝑚 = 1 + 2 + 3 + 4 + 5

We can see that for any number 𝑛, the sum is the number 𝑛 plus the sum of the previous numbers. The

sum function can therefore be defined recursively as:

𝑠𝑢𝑚(1) = 1

𝑠𝑢𝑚(2) = 2 + 𝑠𝑢𝑚(1)

𝑠𝑢𝑚(3) = 3 + 𝑠𝑢𝑚(2)

𝑠𝑢𝑚(4) = 4 + 𝑠𝑢𝑚(3)

…

𝑠𝑢𝑚(𝑛) = 𝑛 + 𝑠𝑢𝑚(𝑛 − 1)

The base

case is 𝑛 = 1

which gives

𝑠𝑢𝑚(1) = 1

Get 𝑛

If 𝑛 = 1 then

 Print “sum is 1”

Else

 𝑠𝑢𝑚 𝑠𝑢𝑚(𝑛 − 1)
 Print sum

